Nonlinear Mach-Zehnder interferometer isolator

Author:

Singh Neetesh1,Kärtner Franz X.12ORCID

Affiliation:

1. Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY

2. Department of Physics, Universität Hamburg

Abstract

Isolators are important devices in optics, especially for low noise systems, as even a small amount of back reflection can be detrimental to the quality of the signal generated by the source impacting downstream applications. Traditionally, magneto-optical materials have been used in isolators for bulk and fiber based optical systems. However, they tend to have high insertion loss, and are complicated to integrate on a photonics chip. Another class of isolators is based on optical nonlinearity that do not require external magnetic bias. However, the devices demonstrated so far suffer from either limited bandwidth, high insertion loss or fabrication complexity. In this work, we demonstrate a monolithic, fully complementary metal-oxide-semiconductor compatible, nonlinear Mach-Zehnder interferometer isolator based on third order optical nonlinearity, that overcomes such issues. In this proof of principle study, we show up to 15 dB isolation with 0.4 dB insertion loss and a device footprint of 0.4 mm2 which can easily be improved on further. The device is broadband and is independent of wavelength, material, and the platform. Not only can such a device be used for integrated optical systems but also for the fibre based optical systems.

Funder

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3