Charting a course to efficient difference frequency generation in molecular-engineered liquid-core fiber

Author:

Keyser Christian K.ORCID,Raab Micah E.1,Hemmer Patrick2,Lopez-Zelaya CesarORCID,Courtney Trevor L.2ORCID,Timler John2

Affiliation:

1. Anyar Inc.

2. SAIC

Abstract

Although χ(2) nonlinear optical processes, such as difference frequency generation (DFG), are often used in conjunction with fiber lasers for wavelength conversion and photon-pair generation, the monolithic fiber architecture is broken by the use of bulk crystals to access χ(2). We propose a novel solution by employing quasi-phase matching (QPM) in molecular-engineered hydrogen-free, polar-liquid core fiber (LCF). Hydrogen-free molecules offer attractive transmission in certain NIR-MIR regions and polar molecules tend to align with an externally applied electrostatic field creating a macroscopic χ e f f (2). To further increase χ e f f (2) we investigate charge transfer (CT) molecules in solution. Using numerical modeling we investigate two bromotrichloromethane based mixtures and show that the LCF has reasonably high NIR-MIR transmission and large QPM DFG electrode period. The inclusion of CT molecules has the potential to yield χ e f f (2) at least as large as has been measured in silica fiber core. Numerical modeling for the degenerate DFG case indicates that signal amplification and generation through QPM DFG can achieve nearly 90% efficiency.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3