Ultralow thermal conductivity of 2D Dion–Jacobson (PDA)(FA)n − 1PbnI3n+ 1 perovskite films

Author:

Yang Wei1,Chen Xiangyu1,Yuan Mingqian2,Geng Zhiming2,Zhao Hongyuan2,Wang Huan1ORCID,Zeng Zhongle1,Chai Nianyao1,Yue Yunfan1,Zhao Fengyi3,Li Sheng1,Lu Minghui2,Chen Yanfeng2,Yan Xuejun2,Wang Xuewen13ORCID

Affiliation:

1. Wuhan University of Technology

2. Nanjing University

3. National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies

Abstract

Two-dimensional (2D) perovskites exhibit enhanced thermal stability compared to three-dimensional perovskites, especially the emerging 2D Dion–Jacobson (DJ) phase perovskite. However, the heat transfer mechanisms in DJ phase perovskites are rarely reported. Herein, we determine thermal conductivities of (PDA)(FA) n  − 1Pb n I3n + 1 films with n = 1−6 by time-domain thermoreflectance. The measured results indicate that the thermal conductivities of these films are extremely low, showing a trend from decline to rise with increasing n values, and reaching to the lowest when n = 2. We measure the propagation of acoustic phonons in films with n = 1−3 by time-domain Brillouin scattering and find phonon velocity plays a key role in the thermal conductivity, which can be explained by the mismatch of spring constants between the inorganic layer and the organic layer using the bead-spring model. The gradually increasing thermal conductivity for larger n values is attributed to the gradual transformation of the grain orientation from horizontal to vertical, which is demonstrated by the grazing-incidence wide-angle x ray scattering (GIWAXS) results. Our work deepens the understanding of the thermal transport process in 2D DJ phase perovskite films and provides insights into thermal management solutions for their devices.

Funder

National Key Research and Development Program of China

Guangdong Basic and Applied Basic Research Foundation

Hainan Provincial Joint Project of Sanya Yazhou Bay science and Technology City

National Natural Science Foundation of China

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Fund of Science and Technology on Surface Physics and Chemistry Laboratory

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3