Convolutional neural network classification of beam profiles from silicon photonics gratings

Author:

Lim Yu Dian1ORCID,Tan Chuan Seng12

Affiliation:

1. Nanyang Technological University

2. Agency for Science, Technology and Research (A*STAR)

Abstract

Convolutional neural network (CNN) models consist of CNN block(s), and dense neural network (DNN) block(s) are used to perform image classification on beam profiles in light beams coupled out from silicon photonics (SiPh) mixed-pitch gratings. The beam profiles are first simulated and segregated into three categories based on their corresponding height above the SiPh gratings. With one CNN block, one DNN block, and 128 nodes in the DNN block, classification accuracy of 98.68% is achieved when classifying 454 beam profile images to their corresponding categories. Expanding the number of CNN blocks, DNN blocks, and nodes, 64 CNN models are constructed, trained, and evaluated. Out of the 64 CNN models, 52 of them achieved classification accuracy of >95%.

Funder

Ministry of Education - Singapore

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3