Abstract
An on-chip optical phased array (OPA) is considered as a promising solution for next generation solid-state beam steering. However, most of the reported OPAs suffer from low operating bandwidths, making them limited in many applications. We propose and demonstrate a high-speed 2D scanning OPA based on thin-film lithium niobate phase modulators with traveling-wave electrodes. The measured modulation bandwidth is up to 2.5 GHz. Moreover, an aperiodic array combined with a slab grating antenna is also used to suppress the grating lobes of far-field beams, which enables a large field of view (FOV) as well as small beam width. A 16-channel OPA demonstrates an FOV of 50°×8.6° and a beam width of 0.73°×2.8° in the phase tuning direction and the wavelength scanning direction, respectively.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
“Pioneer” and “Leading Goose” RD Program of Zhejiang
Natural Science Foundation of Ningbo Municipality
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献