Affiliation:
1. Zhejiang University
2. Research Institute of Intelligent Networks
3. Chinese Electronics Technology Group Corporation
4. Chinese Academy of Sciences
Abstract
We experimentally demonstrate two types of programmable, low-threshold, optically controlled nonlinear activation functions, which are challenging to realize in photonic neural networks (PNNs). These devices rely on on-chip integrated Ge–Si photoelectric detectors and silicon electro-optical switches, and they generate rectified linear unit (ReLU) or sigmoid functions with arbitrary slopes without additional electrical processing. Both devices function at an extremely low threshold of 0.2 mW. The embedding of these nonlinear activation functions into convolutional neural networks facilitates the attainment of high inference accuracies of up to 95% when applied to Modified National Institute of Standards and Technology (MNIST) handwritten digit-classification tasks. The devices are suitable for low-power PNNs with an arbitrary number of propagation layers in photonic-computing chips.
Funder
National Natural Science Foundation of China
Key Research Project of Zhejiang Lab
Subject
Atomic and Molecular Physics, and Optics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献