Highly transparent Ce:Nd:YAG ceramic with good light conversion capacity for solar-pumped solid-state lasers

Author:

Zheng Xinyu,Xie Hui,Zhou Tianyuan,Li Yanbin,Li Jianqiang1,Wang Siqing,Zhou Zihan,Xu Lele,Zhou Yuhuan,Chen Hao2,Strek Wieslaw3,Zhang Jing4ORCID,Zhang Le25ORCID

Affiliation:

1. University of Science and Technology Beijing

2. Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology

3. Institute of Low Temperature and Structure Research

4. Wuxi Vocational Institute of Arts & Technology

5. Shandong University

Abstract

Developing a high quality ceramic laser gain medium for solar directly pumped solid state lasers is essential, and yet the light conversion efficiency of the gain media for solar pumping remains a challenge. In this study, Ce and Nd ions, co-doped YAG transparent ceramics with theoretical transmittance and stable Ce3+ valent state were developed, and revealed that the absorbed visible light and light conversion efficiency in Ce,Nd:YAG ceramics were 3.98 times and 1.34 times higher than those in widely reported Cr,Nd:YAG ceramics, respectively. A concentration matching principle between Ce3+ and Nd3+ ions in YAG was established, and a higher Nd3+ ion doping concentration with a relatively low Ce3+ concentration was favorable to improve both the light conversion efficiency and emission intensity at 1064 nm of Ce,Nd:YAG ceramics. Energy transfer efficiency from Ce3+ to Nd3+ of the 0.3 at.%Ce,1.5at.%Nd:YAG ceramic reached as high as 61.71% at room temperature. Surprisingly, it was further promoted to 64.31% at a higher temperature of 473 K. More excited electrons at the upper energy level of Ce3+ ion under the high temperature accounted for this novel phenomenon. This study proposes a new design strategy of gain materials for solar directly pumped solid state lasers.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

International S&T Cooperation Program of Jiangsu Province

Key Research and Development Project of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Special Project for Technology Innovation of Xuzhou City

Open Project of State Key Laboratory of Crystal Materials

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3