Demonstration of 3kW × 2 ports bidirectional output oscillating-amplifying integrated fiber laser employing chirped and tilted fiber Bragg gratings for co-SRS suppression

Author:

Liu Jiaqi1ORCID,Zeng Lingfa1ORCID,Wang Peng1,Wu Hanshuo1ORCID,Xi Xiaoming1,Shi Chen1,Zhang Hanwei1,Wang Xiaolin1,Ning Yu1,Xi Fengjie1

Affiliation:

1. National University of Defense Technology

Abstract

Bidirectional output oscillating-amplifying integrated fiber laser (B-OAIFL) is a newly developed configuration with many advantages like compactness and good reliability. In this work, a B-OAIFL with a low time-stabilized threshold was constructed by employing a pair of side pump/signal combiner in the oscillating section, which demonstrates smooth temporal characteristics with no pulse detected by the photodetector at the output power level of only a few of tens Watts. We investigated the effect of side pumping on the Raman Stokes light and verified its contribution to mitigating the temporal-chaos-induced stimulated Raman scattering (SRS). The phenomenon of co-SRS caused by the mutual excitation of backward Stokes light from two amplifying sections under bidirectional pumping was first reported and studied. A pair of chirped and tilted fiber Bragg gratings (CTFBGs) were applied between the oscillating and amplifying sections to suppress the co-SRS, and the effect of the number of CTFBGs on the suppression of co-SRS was studied in detail experimentally. Finally, we successfully suppressed the co-SRS, and achieved a 3kW × 2 ports laser output, with a near-single-mode beam quality of M A 2∼1.3,M B 2∼1.4. In contrast, without the use of CTFBG, only a 2 kW-level output was obtained from each port, limited by co-SRS (with an SRS suppression ratio of less than 15 dB). The maximum output power of end A and end B is 3133 W and 3213 W, with the SRS suppression ratio of about 27.6 dB and 28.1 dB, respectively. No TMI features were observed under bidirectional pumping. The results demonstrate a significant potential for further power scaling based on this configuration. To the best of our knowledge, it is the highest output power achieved based on the B-OAIFL.

Funder

Training Program for Excellent Young Innovations of Changsha

Funds for Distinguished Youth of Hunan Provence

Basic Scientific Research Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3