Abstract
Multi-soliton operation in fiber lasers is a promising platform for the investigation of soliton interaction dynamics and high repetition-rate pulse. However, owing to the complex interaction process, precisely manipulating the temporal spacing of multiple solitons in a fiber laser is still challenging. Herein, we propose an automatic way to control the temporal spacing of multi-soliton operation in an ultrafast fiber laser by a hybrid genetic algorithm-particle swarm optimization (GA-PSO) algorithm. Relying on the intelligent adjustment of the electronic polarization controller (EPC), the on-demand temporal spacing of the double solitons can be effectively achieved. In particular, the harmonic mode locking with equal temporal spacing of double solitons is also obtained. Our approach provides a promising way to explore nonlinear soliton dynamics in optical systems and optimize the performance of ultrafast fiber lasers.
Funder
National Natural Science Foundation of China
Guangxi Key Research and Development Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献