Random misalignment and anisotropic deformation of the nested cladding elements in hollow-core anti-resonant fibers

Author:

Petry Michael1ORCID,Amezcua-Correa Rodrigo2,Habib Md. SelimORCID

Affiliation:

1. University of Applied Sciences Karlsruhe

2. University of Central Florida

Abstract

Hollow-core anti-resonant fibers (HC-ARFs) are en route to compete with and surpass the transmission performance of standard single-mode fibers (SSMFs). Recently, nested cladding elements emerged as a key enabler in reaching ultra-low transmission losses over a wide bandwidth. However, implementing nested geometry features poses a great challenge even in the current state-of-the-art fiber fabrication technology, often leading to structural imperfections, which ultimately worsen overall fiber performance. This article provides insights into the impact of fabrication-based perturbations of the cladding elements on the transmission performance and identifies areas of highest susceptibility. The impact of random outer and nested cladding tube misalignments as well as their anisotropic deformation on the propagation loss is analyzed based on observations of experimentally fabricated fibers. A dominance of the deformation effect over the misalignment effect is observed, with higher-order modes (HOMs) being affected one order of magnitude stronger than the fundamental mode (FM). The impact on propagation loss by structural perturbations is highly wavelength dependent, ranging from negligibly small values up to loss increases of 65% and 850% for FM and HOM propagation, respectively. The investigations are directly linked to fabrication metrics and therefore pave the way for assessing, predicting, and improving the transmission quality of fabricated hollow-core fibers.

Funder

Air Force Research Laboratory

Army Research Office

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3