Power evolution prediction of bidirectional Raman amplified WDM system based on PINN

Author:

Mei Muyang,Li Yuan1,Niu Mengchao1,Zhu Jiaye1,Li Wei,Luo Ming2ORCID,Feng Zhongshuai,Wu Xuefeng3,Mei Liang3,Hu Qianggao4,Jiang Yi4,Yang Xuefeng4

Affiliation:

1. Central China Normal University

2. China Information and Communication Technologies Group Corporation

3. Fiberhome Telecommunication Technologies Co., Ltd.

4. Accelink Technologies Co., Ltd. Wuhan

Abstract

We propose using physical-informed neural network (PINN) for power evolution prediction in bidirectional Raman amplified WDM systems with Rayleigh backscattering (RBS). Unlike models based on data-driven machine learning, PINN can be effectively trained without preparing a large amount of data in advance and can learn the potential rules of power evolution. Compared to previous applications of PINN in power prediction, our model considers bidirectional Raman pumping and RBS, which is more practical. We experimentally demonstrate power evolution prediction of 200 km bidirectional Raman amplified wavelength-division multiplexed (WDM) system with 47 channels and 8 pumps using PINN. The maximum prediction error of PINN compared to experimental results is only 0.38 dB, demonstrating great potential for application in power evolution prediction. The power evolution predicted by PINN shows good agreement with the results simulated by traditional numerical method, but its efficiency is more suitable for establishing models and calculating noise, providing convenience for subsequent power configuration optimization.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3