Affiliation:
1. Mechatronics Research
2. Samsung R&D Institute Japan
Abstract
We present an innovative ellipsometry technique called self-interferometric pupil ellipsometry (SIPE), which integrates self-interference and pupil microscopy techniques to provide the high metrology sensitivity required for metrology applications of advanced semiconductor devices. Due to its unique configuration, rich angle-resolved ellipsometric information from a single-shot hologram can be extracted, where the full spectral information corresponding to incident angles from 0° to 70° with azimuthal angles from 0° to 360° is obtained, simultaneously. The performance and capability of the SIPE system were fully validated for various samples including thin-film layers, complicated 3D structures, and on-cell overlay samples on the actual semiconductor wafers. The results show that the proposed SIPE system can achieve metrology sensitivity up to 0.123 nm. In addition, it provides small spot metrology capability by minimizing the illumination spot diameter up to 1 µm, while the typical spot diameter of the industry standard ellipsometry is around 30 µm. As a result of collecting a huge amount of angular spectral data, undesirable multiple parameter correlation can be significantly reduced, making SIPE ideally suited for solving several critical metrology challenges we are currently facing.
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献