Affiliation:
1. Univ. of Maryland
2. MIT
3. MIT Lincoln Laboratory
Abstract
Optical phase-change materials have enabled nonvolatile programmability in integrated photonic circuits by leveraging a reversible phase transition between amorphous and crystalline states. To control these materials in a scalable manner on-chip, heating the waveguide itself via electrical currents is an attractive option which has been recently explored using various approaches. Here, we compare the heating efficiency, fabrication variability, and endurance of two promising heater designs which can be easily integrated into silicon waveguides—a resistive microheater using n-doped silicon and one using a silicon p-type/intrinsic/n-type (PIN) junction. Raman thermometry is used to characterize the heating efficiencies of these microheaters, showing that both devices can achieve similar peak temperatures but revealing damage in the PIN devices. Subsequent endurance testing and characterization of both device types provide further insights into the reliability and potential damage mechanisms that can arise in electrically programmable phase-change photonic devices.
Funder
Office of Naval Research
National Science Foundation
Subject
Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献