Multi working mode SPR chip laboratory for high refractive index detection

Author:

Ren Zhuo,Liu Chunlan,Wei Yong,Liu Chunbiao,Shi Chen,Wang XingkaiORCID,Tang Yixiong,Wang Rui,Liu Zhihai1

Affiliation:

1. Harbin Engineering University

Abstract

The Fiber SPR chip laboratory has become a popular choice in biochemical detection. To meet the needs of different kinds of analytes for the detection range and number of channels of the chip, we proposed a multi-mode SPR chip laboratory based on microstructure fiber in this paper. The chip laboratory was integrated with microfluidic devices made from PDMS and detection units made of bias three-core fiber and dumbbell fiber. By injecting light into different cores of a bias three-core fiber, different detection areas of dumbbell fiber can be selected, enabling the chip laboratory to enter high refractive index detection, multi-channel detection and other working modes. In the high refractive index detection mode, the chip can detect liquid samples with a refractive index range of 1.571-1.595. In multi-channel detection mode, the chip can achieve dual parameter detection of glucose and GHK-Cu, with sensitivities of 4.16 nm/(mg/mL) and 9.729 nm/(mg/mL), respectively. Additionally, the chip can switch to temperature compensation mode. The proposed multi working mode SPR chip laboratory, based on micro structured fiber, offers a new approach for the development of portable testing equipment that can detect multiple analytes and meet multiple requirements.

Funder

Chongqing Graduate Student Research Innovation Project[China]

Foundation of Intelligent Ecotourism Subject Group of Chongqing Three Gorges University

Open Project Program of Key Laboratories of Sensing and Application of Intelligent Optoelectronic System in Sichuan Provincial Universities

Chongqing Three Gorges University[China]

Open Project Program of Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area

Chongqing Municipal Education Commission

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3