Modeling of a high-power continuous wave Yb:YAG planar waveguide amplifier under thermal steady-state

Author:

Qu Bo1ORCID,Wang Sibo1,Zhu Zhanda1234,Hui Yongling1234,Lei Hong1234,Li Qiang1234

Affiliation:

1. Beijing University of Technology

2. Beijing Engineering Research Center of Laser Technology

3. Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing

4. Key Laboratory of Trans-scale Laser Manufacturing Technology Ministry of Education

Abstract

The performance of a novel, to the best of our knowledge, high-power Yb:YAG planar waveguide amplifier under thermal steady-state is studied numerically. We present a 3D thermal steady-state amplification model, which considers the effects of temperature on the Boltzmann occupation factors, pump absorption, and laser emission cross sections, in addition to reabsorption and pump saturation of Yb:YAG. The performance of a multipass-pumped planar waveguide amplifier under thermal steady-state was simulated considering the loss in the claddings, and a comparison with the simulated results under the ideal state was carried out. Our analysis results show that the core’s temperature rise and the claddings’ pump absorption lead to decreased pump absorption and optical-optical efficiencies. However, a high pump absorption efficiency (96%) and optical-optical efficiency (61.2%) are achieved when the pump power is 10 kW. Meanwhile, a lower fracture and minor thermal distortion can be expected in reality.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3