Abstract
Broadband integrated thin-film lithium niobate (TFLN) electro-optic modulators (EOM) are desirable for optical communications and signal processing in both the O-band (1310 nm) and C-band (1550 nm). To address these needs, we design and demonstrate Mach-Zehnder (MZ) EOM devices in a hybrid platform based on TFLN bonded to foundry-fabricated silicon photonic waveguides. Using a single silicon lithography step and a single bonding step, we realize MZ EOM devices which cover both wavelength ranges on the same chip. The EOM devices achieve 100 GHz EO bandwidth (referenced to 1 GHz) and about 2-3 V.cm figure-of-merit (
V
π
L
) with low on-chip optical loss in both the O-band and C-band.
Funder
National Aeronautics and Space Administration
Office of Naval Research
U.S. Department of Defense
Subject
Atomic and Molecular Physics, and Optics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献