Abstract
We developed an accelerated Genetic Algorithm (GA) system based on the cooperation of a field-programmable gate array (FPGA) and the optimized parameters that enables fast light focusing through scattering media. Starting at the searching space, which influences the convergence of the optimization algorithms, we manipulated the mutation rate that defines the number of mutated pixels on the spatial light modulator to accelerate the GA process. We found that the enhanced decay ratio of the mutation rate leads to a much faster convergence of the GA. A convergence-efficiency function was defined to gauge the tradeoff between the processing time and the enhancement of the focal spot. This function allowed us to adopt the shorter iteration number of the GA that still achieves applicable light focusing. Furthermore, the accelerated GA configuration was programmed in FPGA to boost processing speed at the hardware level. It shows the ability to focus light through scattering media within a few seconds, 150 times faster than the PC-based GA. The processing cycle could be further promoted to a millisecond-level with the advanced FPGA processor chips. This study makes the evolution-based optimization approach adaptable in dynamic scattering media, showing the capability to tackle wavefront shaping in biological material.
Funder
R&D Funding from LinOptx
National Natural Science Foundation of China
Science Specialty Program of Sichuan University
Subject
Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献