Affiliation:
1. Peng Cheng Laboratory
2. Institute of Southwestern Communication
3. Shanghai Jiao Tong University
4. Taiyuan University of Technology
5. Guangdong University of Technology
Abstract
A model construction scheme of chaotic optoelectronic oscillator (OEO) based on the Fourier neural operator (FNO) is proposed. Different from the conventional methods, we learn the nonlinear dynamics of OEO (actual components) in a data-driven way, expecting to obtain a multi-parameter OEO model for generating chaotic carrier with high-efficiency and low-cost. FNO is a deep learning architecture which utilizes neural network as a parameter structure to learn the trajectory of the family of equations from training data. With the assistance of FNO, the nonlinear dynamics of OEO characterized by differential delay equation can be modeled easily. In this work, the maximal Lyapunov exponent is applied to judge whether these time series have chaotic behavior, and the Pearson correlation coefficient (PCC) is introduced to evaluate the modeling performance. Compare with long and short-term memory (LSTM), FNO is not only superior to LSTM in modeling accuracy, but also requires less training data. Subsequently, we analyze the modeling performance of FNO under different feedback gains and time delays. Both numerical and experimental results show that the PCC can be greater than 0.99 in the case of low feedback gain. Next, we further analyze the influence of different system oscillation frequencies, and the generalization ability of FNO is also analyzed.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
The Major Key Project of PCL
Sichuan Science and Technology Program
Natural Science Foundation of Sichuan Province
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献