Modeling of a multi-parameter chaotic optoelectronic oscillator based on the Fourier neural operator

Author:

Feng JiachengORCID,Jiang Lin1,Yan Lianshan1ORCID,Yi Anlin,Li Song-suiORCID,Pan Wei,Luo Bin,Pan Yan2,Xu Bingjie2,Yi Lilin3,Wang Longsheng4,Wang Anbang4,Wang Yuncai5

Affiliation:

1. Peng Cheng Laboratory

2. Institute of Southwestern Communication

3. Shanghai Jiao Tong University

4. Taiyuan University of Technology

5. Guangdong University of Technology

Abstract

A model construction scheme of chaotic optoelectronic oscillator (OEO) based on the Fourier neural operator (FNO) is proposed. Different from the conventional methods, we learn the nonlinear dynamics of OEO (actual components) in a data-driven way, expecting to obtain a multi-parameter OEO model for generating chaotic carrier with high-efficiency and low-cost. FNO is a deep learning architecture which utilizes neural network as a parameter structure to learn the trajectory of the family of equations from training data. With the assistance of FNO, the nonlinear dynamics of OEO characterized by differential delay equation can be modeled easily. In this work, the maximal Lyapunov exponent is applied to judge whether these time series have chaotic behavior, and the Pearson correlation coefficient (PCC) is introduced to evaluate the modeling performance. Compare with long and short-term memory (LSTM), FNO is not only superior to LSTM in modeling accuracy, but also requires less training data. Subsequently, we analyze the modeling performance of FNO under different feedback gains and time delays. Both numerical and experimental results show that the PCC can be greater than 0.99 in the case of low feedback gain. Next, we further analyze the influence of different system oscillation frequencies, and the generalization ability of FNO is also analyzed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

The Major Key Project of PCL

Sichuan Science and Technology Program

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3