Affiliation:
1. Huazhong University of Science and Technology
Abstract
Chiral metamaterials with circular dichroism (CD) or asymmetric transmission (AT) draw enormous attention for their attractive applications in polarization transformers, circular polarizers, and biosensing. In this study, a feasible trilayer chiral metamaterials (TCM) is designed and investigated in theory and simulation. The proposed TCM is composed of a nanoslit layer and a Babinet-complementary nanorod layer separated by a nanoslit spacer. Owing to symmetry breaking by the tilted nanoslit in metal film, the TCM shows simultaneous CD and AT effects in the near-infrared region. The simulated electric charge distributions prove that the chirality arises from the excitation of asymmetric electric dipole resonant modes due to the coupling of adjacent unit cells. Moreover, CD and AT can be tuned by the tilted angle of the nanoslit and the thickness of the spacer, the fitting functions of which are consistent with the theoretical formulas based on transmittance matrix analysis. The proposed nanostructure offers a potential strategy for manipulating metamaterials with simultaneous CD and AT effects, allowing a multitude of exciting applications such as ultra-sensitive polarization transformer and biosensor.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Guangdong Province
Key Technologies Research and Development Program of Shenzhen
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献