Abstract
Due to the fact that the existing generation of wireless communication cannot possibly keep up with the current traffic explosion and emerging applications, research and development on next-generation (i.e., sixth generation, 6G) wireless technologies is being carried out worldwide. In this regard, it is anticipated that the space-air-ground (SAG) network with free space optics (FSO) communication can provide the terabits per second throughput necessary to sustain various potential 6G applications. However, FSO communications are susceptible to atmospheric turbulence, pointing errors, and beam scintillation effects. To remedy the severe atmospheric effects, we propose a multiple high-altitude platform station (HAPS)-based SAG network with a HAPS selection scheme. For the proposed system, we have derived the closed-form expressions for outage probability, average symbol error rate (SER), ergodic capacity, and outage capacity over Málaga distribution with pointing errors. Further, the asymptotic expressions for outage probability, average SER, and outage capacity were derived to enhance the comprehension of the system from a practical standpoint. It is observed from the numerical results that the multiple HAPS-based FSO system performs better than the existing HAPS-based FSO systems.
Funder
Mathematical Research Impact Centric Support
Core Research Grant
Japan Society for the Promotion of Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献