Physical prior inspired ensemble learning enables effective channel estimation of underwater visible light communication

Author:

Cai JifanORCID,Li ZiweiORCID,Chi NanORCID

Abstract

Deep neural networks have been applied to estimate the optical channel in communication systems. However, the underwater visible light channel is highly complex, making it challenging for a single network to accurately capture all its features. This paper presents a novel approach to underwater visible light channel estimation using a physical prior inspired network based on ensemble learning. A three-subnetwork architecture was developed to estimate the linear distortion from inter-symbol interference (ISI), quadratic distortion from signal-to-signal beat interference (SSBI), and higher-order distortion from the optoelectronic device. The superiority of the Ensemble estimator is demonstrated from both the time and frequency domains. In terms of mean square error performance, the Ensemble estimator outperforms the LMS estimator by 6.8 dB and the single network estimators by 15.4 dB. In terms of spectrum mismatch, the Ensemble estimator has the lowest average channel response error, which is 0.32 dB, compared to 0.81 dB for LMS estimator, 0.97 dB for the Linear estimator, and 0.76 dB for the ReLU estimator. Additionally, the Ensemble estimator was able to learn the V-shaped Vpp-BER curves of the channel, a task not achievable by single network estimators. Therefore, the proposed Ensemble estimator is a valuable tool for underwater visible light channel estimation, with potential applications in post-equalization, pre-equalization, and end-to-end communication.

Funder

National Natural Science Foundation of China

Peng Cheng Laboratory

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3