Affiliation:
1. Huazhong university of Science and Technology
2. University of Electronic Science and Technology of China
3. Shenzhen University
4. Optics Valley Laboratory
Abstract
All-optical canonical logic unit (CLU) is the basic building block of high-speed optical logic operation and complex optical computing. By utilizing the parallelism of optical signals, multichannel multicasting of all-optical CLUs can expand the capacity of the computing system effectively. Here, we propose and experimentally demonstrate the 40 Gb/s all-optical reconfigurable two-input CLUs generated in seven wavelength channels via four-wave mixing (FWM) in the nonlinearity-enhanced silicon waveguide. By introducing reverse-biased PIN junctions to reduce nonlinear loss, the output power of converted light can be increased over 10 dB. Moreover, pumped by two optical signals and a continuous wave beam, a full set of reconfigurable CLUs is multicasted in seven parallel wavelength channels. All logic signals with error-free performance are realized. Attributing to the rate transparency of FWM and parallel multicasting of logic functions, the proposed scheme offers more flexibility and expandability in future high-speed optical logic processing and complex optical computing.
Funder
National Key Research and Development Program of China
China National Funds for Distinguished Young Scientists
China Postdoctoral Science Foundation
Natural Science Foundation of Guangdong Province
Key Technologies Research and Development Program of Shenzhen
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献