Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice

Author:

Wen Pengyu,Wang Min1ORCID,Long Gui-Lu12ORCID

Affiliation:

1. Beijing Academy of Quantum Information Sciences

2. Frontier Science Center for Quantum Information

Abstract

In this paper, we propose a 1-dimensional optomechanical lattice which possesses non-Hermitian property due to its nonreciprocal couplings. We calculated the energy spectrum under periodical boundary condition and open boundary condition, respectively. To investigate the transmission property of the system, we calculate the Green function of the system using non-Bloch band theory. By analyzing the Green function and the periodical boundary condition results, we studied the directional amplification of the system and found the frequency that supports the amplification. By adding probe laser on one site and detect the output of the same site, we found that optomechanically induced transparency (OMIT) can be achieved in our system. Different from the traditional OMIT spectrum, quantum interference due to a large number of modes can be observed in our system. When varying the nonreciprocal and other parameters of the system, the OMIT peak can be effectively modulated or even turned into optomechanically induced amplification. Our system is very promising to act as a one-way signal filter. Our model can also be extended to other non-Hermitian optical systems which may possess topological features and bipolar non-Hermitian skin effect.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Special Project for Research and Development in Key areas of Guangdong Province

Beijing Innovation Center for Future Chip

Tsinghua Initiative Scientific Research Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3