Fiber-optic hydrophone for detection of high-intensity ultrasound waves

Author:

Aytac Kipergil Esra1ORCID,Martin Eleanor1,Mathews Sunish J.1ORCID,Papakonstantinou Ioannis2ORCID,Alles Erwin J.1ORCID,Desjardins Adrien E.1

Affiliation:

1. University College London, Malet Place Engineering Building

2. University College London

Abstract

Fiber-optic hydrophones (FOHs) are widely used to detect high-intensity focused ultrasound (HIFU) fields. The most common type consists of an uncoated single-mode fiber with a perpendicularly cleaved end face. The main disadvantage of these hydrophones is their low signal-to-noise ratio (SNR). To increase the SNR, signal averaging is performed, but the associated increased acquisition times hinder ultrasound field scans. In this study, with a view to increasing SNR while withstanding HIFU pressures, the bare FOH paradigm is extended to include a partially reflective coating on the fiber end face. Here, a numerical model based on the general transfer-matrix method was implemented. Based on the simulation results, a single-layer, 172 nm TiO2-coated FOH was fabricated. The frequency range of the hydrophone was verified from 1 to 30 MHz. The SNR of the acoustic measurement with the coated sensor was 21 dB higher than that of the uncoated one. The coated sensor successfully withstood a peak positive pressure of 35 MPa for 6000 pulses.

Funder

Wellcome Trust

UKRI Future Leaders Fellowship

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accuracy of Fiber Optic Probe Hydrophone Underwater Ultrasonic Cavitation Environment;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3