Validation of photoacoustic/ultrasound dual imaging in evaluating blood oxygen saturation

Author:

Liu SiruiORCID,Zhang RuiORCID,Han Tao1,Pan Yinhao2,Zhang Guangjie1,Long Xing1,Zhao Chenyang,Wang Ming,Li Xuelan,Yang Fang2,Sang Yuchao2,Zhu Lei2,He Xujin2,Li Jianchu,Zhang Yewei3,Li Changhui1ORCID,Jiang Yuxin,Yang Meng

Affiliation:

1. Peking University

2. Mindray Bio-Medical Electronics Co., Ltd.

3. The Second Affiliated Hospital of Nanjing Medical University

Abstract

Photoacoustic imaging (PAI) was performed to evaluate oxygen saturation (sO2) of blood-mimicking phantoms, femoral arteries in beagles, and radial arteries in humans at various sO2 plateaus. The accuracy (root mean square error, RMSE) of PAI sO2 compared with reference sO2 was calculated. In blood-mimicking phantoms, PAI achieved an accuracy of 1.49% and a mean absolute error (MAE) of 1.09% within 25 mm depth, and good linearity (R = 0.968; p < 0.001) was obtained between PAI sO2 and reference sO2. In canine femoral arteries, PAI achieved an accuracy of 2.16% and an MAE of 1.58% within 8 mm depth (R = 0.965; p < 0.001). In human radial arteries, PAI achieved an accuracy of 3.97% and an MAE of 3.28% in depth from 4 to 14 mm (R = 0.892; p < 0.001). For PAI sO2 evaluation at different depths in healthy volunteers, the RMSE accuracy of PAI sO2 increased from 2.66% to 24.96% with depth increasing from 4 to 14 mm. Through the multiscale method, we confirmed the feasibility of the hand-held photoacoustic/ultrasound (PA/US) in evaluating sO2. These results demonstrate the potential clinical value of PAI in evaluating blood sO2. Consequently, protocols for verifying the feasibility of medical devices based on PAI may be established.

Funder

CAMS Innovation Fund for Medical Sciences

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Beijing Nova Program Interdisciplinary Cooperation Project

International Science and Technology Cooperation Programme

National Key Research and Development Program from the Ministry of Science and Technology of the People’s Republic of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3