QoS based enhanced lossless contention MAC protocol for ultraviolet network

Author:

Li Cheng1,Li Jianhua1ORCID,Wang Jingyuan1,Zhao Jiyong1,Gao Guige2,Wang Ke2,Su Yang1ORCID,Xu Zhiyong1

Affiliation:

1. Army Engineering University of PLA

2. Unit 31121

Abstract

Ultraviolet (UV) communication, with its excellent characteristics of non-line-of-sight propagation, high confidentiality, and flexible networking, has gradually gained traction in the field of research. The UV media access control (MAC) protocol is relatively lacking at present, and the UV lossless contention MAC (UVLLC-MAC) protocol designed by our team earlier is limited by the predictability of communication network topology; hence, it is not applicable to multinode and multi-data networks. In order to be applicable to multinode network and satisfy the quality of service (QoS) for various data, an enhanced UVLLC-MAC (eUVLLC-MAC) protocol is proposed based on the binary exponential backoff (BEB) and UVLLC protocols. A two-dimensional Markov chain is established to analyze the network performance, and the throughput and delay expressions of the UV network are derived systematically. Subsequently, the effects of reset probability, maximum backoff order, and priority types on network performance are analyzed, and the protocol parameters are optimized to obtain the best network performance. Finally, it is observed that compared with the BEB and UVLLC-MAC protocols, the network under the eUVLLC-MAC protocol can obtain better performance in throughput, packet loss rate and delay comprehensively, which demonstrates the effectiveness of the proposed protocol. Additionally, the eUVLLC-MAC protocol can provide guidance for multinode and multi-data UV networking.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3