Static and dynamic disturbance compensation for optical misalignment of large ground-based wide field survey telescope

Author:

Cao Yuyan12ORCID,Wang Jianli12,Fan Wenqiang1,Wang Zhichen12,Wang Honghao12,Liu Yang12,Wang Fuguo1,Li Hongwen1,Xu Wei1

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

Abstract

For large ground-based telescopes, static and dynamic disturbances would greatly degrade the optical performance. This is especially true for wide field survey telescopes with prime focus optics. The estimation of disturbance effects on large telescopes is becoming increasingly important during the design phase. Therefore, a wide field survey telescope with 2.5 m aperture and 3.5 deg field of view is studied in this research. This telescope is under construction now, and its first light is expected at the beginning of 2023. The estimation method for the optical performance under static and dynamic disturbances in the temporal domain and the active compensation method to improve the optical alignment, are investigated, which is a supplement for the simulation in the frequency domain. First, based on the mechanical model, the optical misalignment is established, where the deviation of the primary mirror is obtained from the length gauges and the deviation of the corrector is computed using the fitting method. Second, a method for compensating the static and dynamic disturbances is proposed, improving the optical performance. This method uses the disturbed primary mirror as the reference, and the corrector is actively controlled to align with it. Finally, a series of experimental tests and numerical simulations is conducted. The results show that the mechanical modeling error is within 10% and the maximum optical misalignment is reduced from 12 / 0.27 to 0.2 / 0.006 m m for static disturbance and from 1.3 / 0.03 to 0.4 / 0.01 m m for dynamic disturbance. Through active compensation, the telescope optical property is greatly improved. The modeling method and the simulation process mentioned in this research can also be used in the other relevant fields.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3