Affiliation:
1. Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology
2. Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology
Abstract
Active manipulation of terahertz (THz) beam deflection and intensity is highly desired for possible applications in wireless communication, radar, and remote sensing. Here, by integrating the phase-gradient metasurfaces and tunable liquid crystal materials, we demonstrate an active THz beam deflection device based on polarization mode conversion. The resonant modes in the photonic cavity formed by the double-layer metasurface and the tunable anisotropic liquid crystal material in the cavity not only improve the polarization conversion efficiency of the device, but also actively regulate the resonance matching conditions. As a consequence, a beam deflection of 47.5° with 50% diffraction intensity at 0.69 THz is achieved in the x-to-y polarization conversion mode, and this beam can be actively modulated with an ultrahigh modulation depth of 99.6% by rotating the anisotropic optical axis of liquid crystals. Moreover, the proposed device can also work as the deflection of 32.5° in the y-to-x polarization conversion mode at 0.94 THz with a maximum diffraction intensity of 38% and an intensity modulation depth of 97.8%. This work provides a new approach based on liquid crystal photonic devices for wavefront manipulation and active modulation for THz waves.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献