Mid-wave infrared planar optical device via femtosecond laser ablation on a sulfur-based polymeric glass surface

Author:

Liu Feng1,Zhou Liang1,Cheng Huachao1ORCID,Li Peng1ORCID,Liu Sheng1,Mao Shan1,Jin Chuan2,Zhu Xiangping2,Zhao Jianlin1ORCID

Affiliation:

1. Northwestern Polytechnical University

2. Chinese Academy of Sciences

Abstract

Sulfur-based polymer materials are attractive for infrared (IR) applications, as they exhibit profoundly high IR transparency, low temperature processability, and higher refractive index relative to conventional organic polymers. In this paper, the laser induced surface damage threshold of such sulfur-based polymeric glass is experimentally studied with femtosecond laser pulse exposure. The single- and multi-shot laser damage thresholds are determined as 41.1 mJ/cm2 and 32.4 mJ/cm2, respectively, and line width of laser scanning is proved to be controllable by laser energy implantation dose. The results enrich the technical knowledge of such novel optical material, and predict its processability by laser surface inscription. While, the amplitude-type binary planar devices based on femtosecond laser ablation are fabricated, and their imaging abilities are performed both in visible light and mid-wave IR regions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

2020 Xi'an Association for Science and Technology of Young Talents Support Project

Open Research Fund of CAS Key Laboratory of Spectral Imaging Technology

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3