Simultaneous sensing of strain and temperature based on the inline-MZI embedded point-shaped taper structure with low crosstalk

Author:

Han Xiao-Peng,Zhang Yun-Dong,Hasi Wuliji,Lin Si-Yu,Wang Fan,Wei Yuan1ORCID,Zhao Zhenyu1

Affiliation:

1. Photonic Institute of Microelectronics

Abstract

An embedded spherical dot taper structure (EDT) based on the MZI principle is proposed in this paper, which is mainly fabricated by using two special arc discharges in the preparation process. The proposed structure involves two specialized arc discharge techniques. First, an oversaturated discharge fusion process creates a micro-arc spherical area on the fiber end face to form the first link type. Second, an unsaturated discharge-pulling taper fusion joint creates a local micro-extrusion operation on this micro-arc fiber end face to form the second link. The thermal stress from instantaneous discharge causes a reverse spherical expansion zone to form in the end face structure, similar to the micromachining of long-period fiber gratings that use local CO2 laser etching to create modulated zones. The study involves a mathematical and theoretical analysis of how geometric parameters in the spherical modulation zone impact the structure's characteristic spectrum. The research demonstrates the potential for this structure to function as a light-intensity modulated strain sensor device through both theoretical and experimental means. As per the experimental findings, the optimized structure displays a high level of strain sensing sensitivity at 0.03 dB/µε and temperature sensing sensitivity of 73 pm/°C (20°C-75°C) and 169 pm/°C (75°C-120°C). Additionally, it possesses excellent cross-sensitivity at only ∼0.0015 µε/°C. Therefore, this sensor presents a favorable option for strain and temperature synchronization sensing and monitoring components, and exhibits notable application prospects in precision engineering, which encompasses mechanical manufacturing, the power and electrical industry, healthcare domain, and certain specialized areas of small-scale precision engineering.

Funder

National Key Research and Development Program of China

the Spaceflight

Shanghai Academy of Spaceflight Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3