Affiliation:
1. Ghent University IMEC
2. OPERA-Photonique
3. Université Rennes
4. Centre de Nanosciences et de Nanotechnologies (C2N)
Abstract
Gallium phosphide-on-insulator emerged recently as a promising platform for integrated nonlinear photonics due to its intrinsic material properties. However, current integration solutions, using direct die-to-wafer bonding, do not support spatially localized integration with CMOS circuits which induce a large and expensive footprint material need. Here we demonstrate the transfer of gallium phosphide layers to an oxidized silicon wafer using micro-transfer printing as a new approach for versatile future (hybrid) integration. Using this novel approach, we demonstrate as a proof of concept the fabrication of gallium phosphide-on-insulator ring resonators with Q-factors as high as 35,000.
Funder
Agence Nationale de la Recherche
Fonds De La Recherche Scientifique - FNRS
European Research Council
Subject
Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献