Quantum dots for photonic quantum information technology

Author:

Heindel TobiasORCID,Kim Je-Hyung1,Gregersen Niels2ORCID,Rastelli Armando3ORCID,Reitzenstein StephanORCID

Affiliation:

1. Ulsan National Institute of Science and Technology (UNIST)

2. Technical University of Denmark

3. Johannes Kepler University Linz

Abstract

The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the relevant quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, the associated quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. In this review, we discuss in depth the great potential of semiconductor quantum dots in photonic quantum information technology. In this context, quantum dots form a key resource for the implementation of quantum communication networks and photonic quantum computers, because they can generate single photons on demand. Moreover, these solid-state quantum emitters are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures such as resonators and waveguide systems, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then introduce modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on semiconductor quantum dots. Furthermore, we highlight the most promising device concepts for quantum light sources and photonic quantum circuits that include single quantum dots as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.

Funder

Danmarks Frie Forskningsfond

HORIZON EUROPE European Research Council

Salzburger Landesregierung

Österreichische Forschungsförderungsgesellschaft

QuantERA

Horizon 2020 Framework Programme

Austrian Science Fund

Einstein Stiftung Berlin

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

National Research Foundation of Korea

ITRC program supervised by the IITP

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3