Affiliation:
1. University of Nebraska-Lincoln
Abstract
Development of methods to control the directional and spectral characteristics of thermal radiation from metallic surfaces is a critical factor enabling many important thermal management applications. In this paper, we study the thermal emission properties of functionalized aluminum surfaces produced through femtosecond laser surface processing (FLSP). These types of surfaces have recently been found to exhibit near-unity broadband omnidirectional emissivity. However, their ultrabroadband absorption response includes visible and near-infrared (IR) radiation, in addition to the mid-IR range, which limits their use as daytime passive radiative cooling devices. Here, we present ways to solve this problem by demonstrating a new, to our knowledge, design that uses a dielectric Bragg visible light reflector to accurately control the thermal emission spectra of the FLSP surface with the goal of achieving high-performance daytime radiative cooling operation. In addition, we propose other designs based on dielectric multilayer structures to further tailor and control the spectra and thermal emission angles of the FLSP surfaces leading to narrowband and broadband directional thermal radiation. The presented photonic engineering approach combined with FLSP structures will be beneficial to various emerging applications, such as radiative cooling, thermal sensing, and thermophotovoltaics.
Funder
Nebraska Space Grant Consortium
Office of Naval Research
National Science Foundation