Polarization-multiplexed full-space metasurface simultaneously merging with an ultrawide-angle antireflection and a large-angle retroreflection

Author:

Chu Zuntian1ORCID,Li Tiefu1,Wang Jiafu1,Jia Yuxiang1,Jiang Jinming1,Zhu Ruichao1ORCID,Li Lei1ORCID,Qu Shaobo1

Affiliation:

1. Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices

Abstract

Multifunctional electromagnetic (EM) metasurfaces are capable of manipulating electromagnetic waves with kaleidoscopic functions flexibly, which will significantly enhance integration and applications of electronic systems. However, most known design schemes only realize the reflection or transmission functions under a specific angle range, which wastes the other half EM space and restricts wider applications of multifunctional metadevices. Herein, an encouraging strategy of broadband and wide-angle EM wavefronts generator is proposed to produce two independent functions, i.e., antireflections for transverse electric (TE) waves and retroreflection for transverse magnetic (TM) waves, which utilizes band-stop and bandpass responses of the metasurface, respectively. As a feasibility verification of this methodology, a three-layer cascaded metasurface, composed of anisotropic crossbar structures patterned on the two surfaces of a dielectric substrate with sandwiched orthogonal metal-gratings, is designed, fabricated, and measured. Both the simulated and experimental results are in good accordance with theoretical analyses. This full-space metasurface opens up a new route to multifunctional metasurfaces and will further promote engineering applications of metasurfaces.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Graduate Scientific Research Foundation of Department of Basic Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3