Polarization-controlled and symmetry-dependent multiple plasmon-induced transparency in graphene-based metasurfaces

Author:

Tang BinORCID,Guo Ziqing,Jin Gui1

Affiliation:

1. Xiangnan University

Abstract

In this paper, we theoretically and numerically demonstrate a polarization-controlled and symmetry-dependent multiple plasmon-induced transparency (PIT) in a graphene-based metasurface. The unit cell of metasurface is composed of two reversely placed U-shaped graphene nanostructures and a rectangular graphene ring stacking on a dielectric substrate. By adjusting the polarization of incident light, the number of transparency windows can be actively modulated between 1 and 2 when the nanostructure keeps a geometrical symmetry with respect to the x-axis. Especially, when the rectangular graphene ring has a displacement along the y-direction, the number of transparency windows can be arbitrarily switched between 2 and 3. The operation mechanism behind the phenomena can be attributed to the near-field coupling and electromagnetic interaction between the bright modes excited in the unit of graphene resonators. Moreover, the electromagnetic simulations obtained by finite-difference time-domain (FDTD) method agree well with the theoretical results based on the coupled modes theory (CMT). In addition, as applications of the designed nanostructure, we also study the modulation degrees of amplitude, insertion loss and group index of transmission spectra for different Fermi energies, which demonstrates an excellent synchronous switch functionality and slow light effect at multiple frequencies. Our designed metasurface may have potential applications in mid-infrared optoelectronic devices, such as optical switches, modulators, and slow-light devices, etc.

Funder

Graduate Research and Innovation Projects of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Applied characteristic Disciplines of Electronic Science and Technology of Xiangnan University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3