Diffractive deep neural network adjoint assist or (DNA)2: a fast and efficient nonlinear diffractive neural network implementation

Author:

Idehenre Ighodalo U.,Harper Eric S.ORCID,Mills Matthew S.ORCID

Abstract

The recent advent of diffractive deep neural networks or D2NNs has opened new avenues for the design and optimization of multi-functional optical materials; despite the effectiveness of the D2NN approach, there is a need for making these networks as well as the design algorithms more general and computationally efficient. The work demonstrated in this paper brings significant improvements to both these areas by introducing an algorithm that performs inverse design on fully nonlinear diffractive deep neural network - assisted by an adjoint sensitivity analysis which we term (DNA)2. As implied by the name, the procedure optimizes the parameters associated with the diffractive elements including both linear and nonlinear amplitude and phase contributions as well as the spacing between planes via adjoint sensitivity analysis. The computation of all gradients can be obtained in a single GPU compatible step. We demonstrate the capability of this approach by designing several types of three layered D2NN to classify 8800 handwritten digits taken from the MNIST database. In all cases, the D2NN was able to achieve a minimum 94.64% classification accuracy with 192 minutes or less of training.

Funder

Air Force Research Laboratory

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3