Measurement of rat and human tissue optical properties for improving the optical detection and visualization of peripheral nerves

Author:

Haugen Ezekiel J.ORCID,Throckmorton Graham A.,Walter Alec B.,Mahadevan-Jansen Anita12,Baba Justin S.3ORCID

Affiliation:

1. Vanderbilt University Medical Center

2. Vanderbilt University

3. Yaya Scientific

Abstract

Peripheral nerve damage frequently occurs in challenging surgical cases resulting in high costs and morbidity. Various optical techniques have proven effective in detecting and visually enhancing nerves, demonstrating their translational potential for assisting in nerve-sparing medical procedures. However, there is limited data characterizing the optical properties of nerves in comparison to surrounding tissues, thus limiting the optimization of optical nerve detection systems. To address this gap, the absorption and scattering properties of rat and human nerve, muscle, fat, and tendon were determined from 352-2500 nm. The optical properties highlighted an ideal region in the shortwave infrared for detecting embedded nerves, which remains a significant challenge for optical approaches. A 1000-1700 nm hyperspectral diffuse reflectance imaging system was used to confirm these results and identify optimal wavelengths for nerve imaging contrast in an in vivo rat model. Optimal nerve visualization contrast was achieved using 1190/1100 nm ratiometric imaging and was sustained for nerves embedded under ≥600 µm of fat and muscle. Overall, the results provide valuable insights for optimizing the optical contrast of nerves, including those embedded in tissue, which could lead to improved surgical guidance and nerve-sparing outcomes.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3