Affiliation:
1. Ocean University of China
2. Beijing Institute of Technology
Abstract
A simultaneous magnetic field and temperature sensing scheme based on cascaded microwave photonic filters (MPFs) with high resolution is proposed and experimentally demonstrated. A polarization maintaining fiber bonded with a giant magnetostrictive material acts both as a magnetic field sensing probe and an important unit of a dispersion-induced MPF. A 500 m single mode fiber in a two-tap MPF is used to perform temperature compensation. The power fading frequency of the dispersion-induced MPF and the dip frequency of the two-tap MPF are selected to monitor the magnetic field and temperature changes. When temperature changes, both power fading frequency and dip frequency will change. While only power fading frequency shifts as magnetic field changes. Consequently, dual parameter sensing can be achieved by monitoring the characteristic microwave frequencies of the two MPFs. The temperature cross-sensitivity is well resolved in this way. In the experiment, the microwave frequency changes 5.84 MHz as external magnetic field increases by 1 mT. The corresponded theoretical resolution can reach 0.17 nT, which is only limited by the minimum resolution of vector network analyzer.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献