Abstract
It has been a challenge to design an optical see-through head-mounted display that is compact, lightweight, and stray-light-suppressed by using freeform optics. A new type of design based on freeform prisms is presented. The system consists of three optical elements and a micro-display. Two prisms serve as near-eye viewing optics that magnify the image displayed by the micro-display, and the other freeform lens is an auxiliary element attached to the main wedge-shaped prism to provide an undistorted see-through view of a real-world scene. The overall thickness of the optical system does not exceed 9.5 mm, and the weight is less than 9.8 g per eye. The final system is based on a 0.49-inch micro-display and features a diagonal field of view of 38°, an F/number of 1.8, with a 10 mm × 7 mm exit pupil diameter, and a 19 mm eye relief. The causes of stray light in the optical-mechanical system are investigated, and effective solutions or theoretical suppression of stray light are given. The freeform optical elements are successfully fabricated, and the system performance is carefully investigated. The results show that the performance of the optical see-through head-mounted display is adequate for practical applications.
Funder
National Key Research and Development Program of China
Young Elite Scientist Sponsorship Program by CAST
Subject
Atomic and Molecular Physics, and Optics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献