Full C-band covered and DWDM channelized high channel-count all-fiber orbital-angular-momentum mode generator based on the fiber gratings

Author:

Meng Zhang1,Mochzuki Naruya1,Oiwa Shiryu1,Zhao Hua2ORCID,Wang Peng3,Zhu Chengliang4ORCID,Li Hongpu1ORCID

Affiliation:

1. Shizuoka University

2. Nanjing Normal University

3. Nanjing Xiaozhuang University

4. Northeastern University

Abstract

To generate the orbital-angular-momentum (OAM) modes at multiple wavelengths, which exactly fit with the dense-wavelength-division-multiplex (DWDM) channel grids, is important to the DWDM-based OAM mode-division-multiplex (MDM) fiber communication system. In this study, a full C-band covered and DWDM channelized OAM mode generator is firstly proposed and experimentally demonstrated, which is realized especially by using a broadband helical long-period fiber grating (HLPG) combined with a phase-only sampled multichannel fiber Bragg grating (MFBG). As a proof-of-concept example, the DWDM channelized two complementary 51-channel OAM mode generators have been successfully demonstrated, each of which has a channel spacing of 100 GHz (∼0.8 nm), an effective bandwidth of ∼40 nm, a high azimuthal-mode conversion efficiency of 90%, and high uniformities in both inter- and intra-channel spectra as well. To the best of our knowledge, this is the first time for proposal and experimental demonstration of such a high channel-count and DWDM channelized first-order OAM mode (l = 1) generator, which can also be used for multichannel higher-order OAM mode generation as long as the utilized HLPG is capable of generating a broadband higher-order OAM mode. The proposed device has potential applications to DWDM-based OAM fiber communications, OAM comb lasers, OAM holography, and OAM sensors as well.

Funder

Yazaki Memorial Foundation for Science and Technology

Japan Society for the Promotion of Science

Natural Science Foundation of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3