Stellar scintillation statistics and the impact of aperture averaging on space-to-ground optical communications

Author:

Yura H. T.,Rose T. S.,Wicker J. M.1

Affiliation:

1. The Aerospace Corporation

Abstract

Statistical probability distributions characterizing received optical power fluctuations, or scintillation, enable performance predictions of space-to-ground optical communication systems. In this paper, we present measurements of stellar scintillation over a wide range of elevation angles and turbulence conditions collected simultaneously with a 5 cm and 40 cm telescope aperture, which allows a comparison between minimal and significant aperture averaging conditions. The measured data is compared to a reasonable set of candidate probability distribution functions (PDFs), including lognormal, which is most often cited in the literature for weak to moderate scintillation. For scintillation indices (SIs) less than about 0.2, the Nakagami-m distribution provides the best representation of the collected data for both apertures and imposes a greater lasercom link penalty than a lognormal distribution, which has been inaccurately implemented as the default probability distribution in the literature. For larger values of the SI, the scintillation is best characterized by a Gamma-Gamma distribution. Additionally, the measured temporal covariance for weak to moderate scintillation conditions is found to be in reasonably good agreement with theoretical predictions.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3