Affiliation:
1. China Jiliang University
2. Zhejiang University
Abstract
The inter-plane crosstalk and limited axial resolution are two key points that hinder the performance of three-dimensional (3D) holograms. The state-of-the-art methods rely on increasing the orthogonality of the cross-sections of a 3D object at different depths to lower the impact of inter-plane crosstalk. Such strategy either produces unidirectional 3D hologram or induces speckle noise. Recently, learning-based methods provide a new way to solve this problem. However, most related works rely on convolution neural networks and the reconstructed 3D holograms have limited axial resolution and display quality. In this work, we propose a vision transformer (ViT) empowered physics-driven deep neural network which can realize the generation of omnidirectional 3D holograms. Owing to the global attention mechanism of ViT, our 3D CGH has small inter-plane crosstalk and high axial resolution. We believe our work not only promotes high-quality 3D holographic display, but also opens a new avenue for complex inverse design in photonics.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献