ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment

Author:

Straub Michael1ORCID,Reber Johannes2,Saier Tarek2,Borkowski Robert1ORCID,Li Shi3ORCID,Khomchenko Dmitry3,Richter André3ORCID,Färber Michael2,Käfer Tobias2,Bonk René1

Affiliation:

1. Nokia Bell Labs

2. Karlsruhe Institute of Technology

3. VPIphotonics

Abstract

An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Optica Publishing Group

Reference13 articles.

1. Remotely powered intelligent splitter monitor for fiber access networks;Hehmann,2015

2. Field trial of a system-independent infrastructure monitoring system for access networks;Straub,2021

3. Remotely powered inline OTDR unit with unique identification possibility of power splitter branches for use in access network applications;Straub,2018

4. Mitigation of the parallel-path effect for reliable monitoring of a passive optical network using standard optical time domain reflectometry

5. A transformer-based model for event recognition and characterization in passive optical networks;Abdelli,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the ECOC 2023 Special Edition;Journal of Optical Communications and Networking;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3