Deep ultraviolet spontaneous emission enhanced by layer dependent black phosphorus plasmonics

Author:

Sikder Bejoy1ORCID,Nayem Suzit Hasan1,Uddin Shiekh ZiaORCID

Affiliation:

1. Bangladesh University of Engineering and Technology (BUET)

Abstract

Although graphene has been the primary material of interest recently for spontaneous emission engineering through the Purcell effect, it features isotropic and thickness-independent optical properties. In contrast, the optical properties of black Phosphorus (BP) are in-plane anisotropic; which supports plasmonic modes and are thickness-dependent, offering an additional degree of freedom for control. Here we investigate how the anisotropy and thickness of BP affect spontaneous emission from a Hydrogenic emitter. We find that the spontaneous emission enhancement rate i.e. Purcell factor (PF) depends on emitter orientation, and PF at a particular frequency and distance can be controlled by BP thickness. At lower frequencies, PF increases with increasing thickness due to infrared (IR) plasmons, which then enhances visible and UV far-field spectra, even at energies greater than 10 eV. By leveraging the thickness and distance-dependent PF, deep UV emission can be switched between 103 nm or 122 nm wavelength from a Hydrogenic emitter. Additionally, we find that doping can significantly tune the PF near BP and this alteration depends on the thickness of the BP. Our work shows that BP is a promising platform for studying strong plasmon-induced light-matter interactions tunable by varying doping levels, emitter orientation, and thickness.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3