Affiliation:
1. The Chinese University of Hong Kong
2. Zhejiang University
3. ZJU-Hangzhou Global Scientific and Technological Innovation Center
Abstract
The limited throughput of nano-scale laser lithography has been the bottleneck for its industrial applications. Although using multiple laser foci to parallelize the lithography process is an effective and straightforward strategy to improve rate, most conventional multi-focus methods are plagued by non-uniform laser intensity distribution due to the lack of individual control for each focus, which greatly hinders the nano-scale precision. In this paper, we present a highly uniform parallel two-photon lithography method based on a digital mirror device (DMD) and microlens array (MLA), which allows the generation of thousands of femtosecond (fs) laser foci with individual on-off switching and intensity-tuning capability. In the experiments, we generated a 1,600-laser focus array for parallel fabrication. Notably, the intensity uniformity of the focus array reached 97.7%, where the intensity-tuning precision for each focus reached 0.83%. A uniform dot array structure was fabricated to demonstrate parallel fabrication of sub-diffraction limit features, i.e., below 1/4 λ or 200 nm. The multi-focus lithography method has the potential of realizing rapid fabrication of sub-diffraction, arbitrarily complex, and large-scale 3D structures with three orders of magnitude higher fabrication rate.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Zhejiang Province
Major Program of Natural Science Foundation of Zhejiang province
Key Project of Zhejiang Laboratory
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献