Abstract
Subwavelength dielectric gratings based on guided mode resonances (GMRs) provide a compact, low-cost, and readily fabricable platform for narrowband spectral filters applied in numerous fields, such as sensors, spectrometers, and hyperspectral imaging. We numerically designed two long-wave infrared transmission bandpass filters based on Ge–ZnS–Ge thin film stacks and 2D zero-contrast gratings. The first filter is attributed to double GMR mode coupling, exhibiting a broadband high reflectance between 8 and 12 µm and a narrow transmission peak with a spectral linewidth of 53 nm and transmittance efficiency of 98% at the resonance. The other filter adopts a low-refractive-index material
B
a
F
2
as the substrate, which displays a lower-transmittance sideband from 8.6 to 9.4 µm, and a higher transmission efficiency up to 100% at the resonance. The physical mechanisms of two spectral responses are all relevant to guided mode coupling and Fabry–Perot resonance.
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献