Fringe-based depth segmentation via minimum-fringe-period-based singular points extraction

Author:

Wu Jiahao,Zhang Shaohui1,Huang Yifan,Hao Qun2

Affiliation:

1. National University of Defense Technology

2. Changchun University of Science and Technology

Abstract

In the field of machine vision, depth segmentation plays a crucial role in dividing targets into different regions based on abrupt changes in depth. Phase-shifting depth segmentation is a technique that extracts singular points to form segmentation lines by leveraging the phase-shifting invariance of singular points in different wrapped phase maps. This makes it immune to color, texture, and camera exposure. However, current phase-shifting depth segmentation techniques face challenges in the precision of segmentation. To overcome this issue, this paper proposes a singular points extraction technique by constructing a more comprehensive threshold with the help of the minimum period of the phase map. Taking full advantage of the proposed technique, mean-value points and order singular points are accurately filtered out, and the integrity of segmentation lines in high-curvature regions can be guaranteed. During optimization processing, the precision of segmentation is improved by employing a low-cost morphology-based optimization model. Simulation results demonstrate the segmentation accuracy reaches up to 98.58% even in a noisy condition. Experimental results on different objects indicate that the proposed method exhibits good generalization and robustness.

Funder

National Natural Science Foundation of China

Foundation Enhancement Program

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3