Highly efficient fluorescent and hybrid white organic light-emitting diodes based on a bimolecular excited system

Author:

Zhang Erdong1,Chen Cong1,Zhao Wencheng1,Yan Duxu1,Tang Jihua1,Wang Jintao2,Chen Ping1,Sheng Ren1

Affiliation:

1. Yantai University

2. Yantai Institute of Technology

Abstract

A bimolecular excited system is considered as a promising candidate for developing white organic light-emitting diodes (WOLEDs) with reduced phosphorescent components. However, for actualizing high-performance WOLED, little attention has been paid to electromers compared to exciplexes. Herein, we construct the bimolecular excited system to prepare fluorescent WOLEDs by combining the electromer emission with the exciplex emission, achieving a maximum power efficiency of 11.8 lm/W with a color rendering index (CRI) of over 80. Furthermore, phosphorescent dopants are doped into an exciplex host to construct hybrid WOLEDs. The fabricated complementary-color and three-color devices achieve maximum efficiencies of 55.3 cd/A (46.8 lm/W) and 34.1 cd/A (26.8 lm/W), respectively. The spectral coverages of WOLEDs are broadened by the bimolecular excited system, and CRIs are further improved at high luminance. Our strategy may bring light to the future development of highly efficient WOLEDs with economy and sustainability.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Graduate Student Research and Innovation Fundation of Yantai University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3