Two-photon direct laser writing of micro Fabry-Perot cavity on single-mode fiber for refractive index sensing

Author:

Cao Simin1,Shang Xinggang1,Yu Hongyan1,Shi Liping1ORCID,Zhang Lei1,Wang Ning2,Qiu Min1

Affiliation:

1. Westlake University

2. University of Chinese Academy of Sciences

Abstract

Using the two-photon polymerization (TPP) lithography, here we propose and experimentally demonstrate a fiber-tipped Fabry-Perot interferometer (FPI) for liquid refractive index (RI) measurement. To fit the aqueous environment, the FPI is designed as an open-cell microstructure consisting of well-crafted surfaces together with supporting rods, where the major spectral interference occurs between the waveguide’s facet and the printed surface. Subsequently, the sensing performances of the fiber FPI are comprehensively studied under various RI as well as temperature configurations. The RI sensitivity is obtained to be ∼1058 nm/RIU with a low detection limit of 4.5× 10−6 RIU, which is comparable to that of previous reported FPIs. And the temperature cross-sensitivity reaches a value of 8.2 × 10−5 RIU/°C, indicating the good reliability for RI monitoring. Compared to other fiber FPIs, our sensor exhibits substantial advantages such as ease of fabrication, highly smooth cavity surfaces, and sufficient mechanical strength, providing a practical and competitive solution for chemical and biological sensing.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3