Analysis of an image noise sensitivity mechanism for matrix-operation-mode-decomposition and a strong anti-noise method

Author:

Deng Yu1ORCID,Chang Qi1ORCID,Chang Hongxiang1,Liu Wei12ORCID,Ma Pengfei12ORCID,Zhou Pu1,Jiang Zongfu12

Affiliation:

1. National University of Defense Technology

2. Hunan Provincial Key Laboratory of High Energy Laser Technology

Abstract

Mode decomposition (MD) based on the matrix operation (MDMO) is one of the fastest mode decomposition methods in fiber laser which has great potential for optical communications, nonlinear optics and spatial characterization applications. However, we found that the image noise sensitivity is the main limit to the accuracy of the original MDMO method, but improving the decomposition accuracy by using conventional image filtering methods is almost ineffective. By using the norm theory of matrices, the analysis result shows that both the image noise and the coefficient matrix condition number determine the total upper-bound error of the original MDMO method. Besides, the greater the condition number, the more sensitive of MDMO method is to noise. In addition, it is found that the local error of each mode information solution in the original MDMO method is different, which depends on the L2-norm of each row vector of the inverse coefficient matrix. Moreover, a more noise-insensitive MD method is achieved by screening out the information corresponding to large L2-norm. In particular, selecting the higher accuracy among the original MDMO method and such noise-insensitive method as the result in a single MD process, a strong anti-noise MD method was proposed in this paper, which displays high MD accuracy in strong noise for both near-filed and far-filed MD cases.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3